
The

DOM
Document Object Model

Implementing the
DOM API for HTML
Reconstruction

By Chad Jordan – March 24th 2009

1

In this guide you will learn:
1. A fundamental definition of what the DOM is, and how to interact with it
2. Understanding the difference between HTML and the DOM
3. Implementing JavaScript to instantiate the HTML document object

The DOM (Document Object Model) is an API (Application Programming Interface) that defines
an interface between XHTML documents and application programs. It is an abstract model
because it must apply to a variety of application programming languages such as Java and
JavaScript. The DOM plays an essential role in making websites interactive. It is an interface
that allows a programming language to manipulate the content, structure, and style of a
website. Each technology (language) that interfaces with the DOM must define a binding to
that interface. Documents in the DOM have a treelike structure, but there can be more than
one tree in a document. Because the DOM is an abstract interface, it does not dictate that
documents must be implemented as trees or collections of trees. Therefore, during
implementation, the relationships among the elements of a document can be represented in
any number of different ways. For example, the following XHTML document and its
corresponding DOM tree illustrate their relationship.

<html xmlns = “http://www.w3.org/1999/xhtml”>
 <head> <title> A DOM Demonstration </title> </head>
 <body>
 <table>

<tr>
<th> Linux </th>
<td> Ubuntu </td>
<td> Mint </td>

</tr>
<tr>
<th> MacOSX </th>
<td> 10.4 </td>
<td> 10.5 </td>

</tr>
 </table>
 </body>
</html>

Introduction

2

A language that is designed to support the DOM must have a binding to the DOM constructs.
This binding amounts to a correspondence between constructs in the language and elements in
the DOM. In the JavaScript binding to the DOM, the elements of a document are objects, with
both data and operations. This data is referred to as properties, and the operations are
naturally called methods. In JavaScript, a lot of elements are initialized, but in the sense of
working with objects in the DOM, we are instantiating the objects. Even though this API is
technically language agnostic, I’ll be instantiating it with JavaScript and altering my 2nd
assignment for my COS 264 class. Just like my previous guides, my code examples will be
displayed using Vim in Linux.

Anyone who is familiar with HTML (Hypertext Markup Language) knows that it is a markup
language created from a plaintext document structured by elements specifically for building
and manipulating text on webpages. As mentioned in my previous Coding A Basic Website
guide, these elements are surrounded by matching opening and closing tags. Each tag begins
and ends with angle brackets (<>). As mentioned earlier, the DOM represents the page so that
programs can change the document structure, style, and content. The DOM represents the
document as nodes and objects; that way, programming languages can interact with the page.
A web page can either be displayed in the browser window or as the HTML source. In both
cases, it is the same document but the DOM allows it to be manipulated. As an object-oriented
representation of the web page, it can be modified with a programming language such as
JavaScript. The DOM is built using multiple APIs that work together. The core DOM defines the
entities describing any document and the objects within it. This is expanded upon as needed by
other APIs that add new features and capabilities to the DOM. For example, the HTML DOM
API adds support for representing HTML documents to the core DOM, and the SVG API adds
support for representing SVG documents. The following diagram represents the
interconnected file structure between HTML and the DOM.

HTML VS The DOM

 3

The elements of an XHTML document have corresponding objects that are visible to an
embedded script written in JavaScript. The addresses of these objects are required, both by
event handling and by the code to make dynamic changes to documents.

JavaScript is one of the most commonly used programming languages with the DOM. As
mentioned earlier, I’m essentially inverting all of the values from my old CSS assignment.
This is a fairly straightforward program that can be executed using one large function in
JavaScript. If you haven’t gathered so far, the whole point of this technology is to dynamically
update the content within an existing web page or site for content management. Typically, a
program like this would be used for managing websites on a much larger scale, but for this
example, I’m only using one web page. For this assignment, I have to invert the case-sensitivity
of the text, the bolded font, place incorrect URLs in place of the existing hyperlinks, delete the
middle index of the page, swap the footer to the top of the page, and finally append new
strings of text all dynamically within a JavaScript file. This will transform my existing CSS page:

Implementing the DOM API

At the beginning of this document I start by getting the URLs and setting them to the
anchorList attribute for nodes 0, and 1. This means anytime I call those attributes and the
nodes connected to them, the specified URLs will be used in place of the original website.

4

This covers the first line, and starting on line 24 the secondLine attribute is given to the second
tree node value (childNode[2]). Again, the same iterative search is performed using nested
conditional statements, a simple regex search, and then we give a character call to the

secondLine attribute. Starting on line 39 we need to make the element of the parentNode
invisible if the child node fails to load. Next, from lines 41 to 44 I declare my variables and
make lastElement the first. In this case, it’s going to be taking my footer, and swapping it all the
way to the top of the page as the first element when the page loads.

Next, beginning on line 6 these variables are going to be used to invert the text. Beginning on
line 10 you can see within the for loop, I have a nested if statement that makes a call to the
first line characters of every sentence using simple regular expressions. This is the method I
put in place for inverting the case-sensitive characters.

5

Starting on line 46 I set up a block of code to remove the centered content from the page. This
means the bolded text and four cell tables section will be completely deleted from the page.

Starting on line 50 the last section consists of appending the string to the end of the document
regex search, and then we give a character call to the secondLine attribute. By passing its
parameter to the function createTextNode. This will print the message, “This document ruined
by construction” and from lines 55 to 59 duplicates it five more times.

 Bottom of the page

6

This concludes the JavaScript programming side of the DOM, and when I run the original HTML
file, the altered results meet all of the requirements of the assignment. As you could see the
page was chopped up and modified in such a way to demonstrate how the DOM can allow us to
dynamically alter web pages and sites from multiple programming/scripting languages in any
way we wish. Aside from being fully editable and dynamic, a few more advantages to using the
DOM are:

1. Through DOM manipulation, the possibilities of content management are limitless.
2. You can create applications that update the data of the page without refreshing the

page.
3. The data is traversable so the user can move back and forth in the tree.
4. The user can create applications that are customizable by the user and then change the

layout of the page without the need of refreshing the page.
5. Language and platform independent

My hope is that this basic DOM API guide is helpful to any who may read it. All diagrams and
code in this guide were created, written, and provided by Chad Jordan. For any possible
inquiries such as general questions regarding this guide or other professional inquiries please
feel free to email me at cjordan@wondercreationstudios.com
Resources Used:

• Sebesta, W. Robert - Programming the World Wide Web – 4th Edition – 2008
• W3schools.com

Conclusion

https://www.w3schools.com

